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ABSTRACT

Diagnosing cognitive errors possessed by examinees can be

considered as a pattern classification problem which is designed

to classify a sequential input of stimuli into one of several

predetermined groups. The sequential. inputs in our context are

item responses and the predetermined groups are various states of

knowledge resulting from misconceptions or different degrees of

incomplete knowledge in a domain. In this Ztudy, the foundations

of a combinatorial algorithm that will provide the universal set

of states of knowledge will be introduced. Each state of

knowledge is represented by a list of "can/cannot" cognitive tasks

and processes (called cognitively relevant attributes or latent

variables) which are usually unobservable. A Boolean descriptive

function will be introduced as a mapping between the attribute

space spanned by latent attribute variables and the item response

space spanned by item score variables. The Boolean descriptive

function plays the role of uncovering the unobservable content of

a black box. Once all the possible classes are retrieved

explicitly and expressed by a set of ideal item response patterns

which are described by a "can/cannot" list of latent attributes,

the notion of bug distributions and statistical pattern

classification techniques will enable us to diagnose students'

states of knowledge accurately. Moreover, investigations on

algebraic properties of these logically-derived-ideal-response

patterns will provide an insight into the structures of the test

and dataset.
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Introduction

A typical pattern classification problem is to classify a

sequential input of stimuli into one of several predetermined

groups. The predetermined groups are considered, in our context,

as latent classes which represent various Atares of knowledge a.:

capabilities, and the stimuli are item response patterns.

Tatsuoka (1983, 1985) introduced a cognitive error diagnostic

model (called rule space) in which a student's response pattern to

the items is classified into one cf the predetermined latent

classes. Each latent class consists of binary patterns that

deviate from a given ideal response pattern by various numbers of

slippages. Tatsuoka & Tatsuoka (1987) introduced the slippage

probabilities and showed that such a class of response patterns

follows a statistical distribution (called a Bug distribution).

The ideal response pattern is the outcome of the perfectly

consistent execution of some erroneous rule of operation or the

response pattern corresponding to some state of knowledge aid

capabilities without errors of measurement. An error analysis or

a task anlysis usually provides a list of erroneous rules of

operations and/or various sources of misconceptions which are

regarded as latent classes in this paper. However, it is

important to have a systematic method for obtaining an appropriate

list of ideal response patterns automatically. The method must be
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applicable to any domain of interest. In this paper, such a

method and the theoretical foundation of the method are

introduced. The theoretical foundation is built upon algebraic

relations between observable item patterns and latent score

patterns of various cognitive tasks. Boolean Lattice theory is

applied to develop the theoretical foundation of a test and data

structure.

An Incidence Matrix and Binary Scoring

Suppose that the underlying characteristics of a domain of

interest are well identified and involvement relationships between

the latent attribute variables Ak, k-l,... ,K (also called

cognitively relevant attributes) and items are coded by a binary

matrix. The matrix is called an incidence matrix. Let the

incidence matrix be a K x n matrix Q where K is the number of

attributes and n is the number of items. The row vectors of Q,

Ak, k = 1..., K indicate which items involve the attribute Ak.

Let latent variable Yk be the score of attribute task Ak; that is,

Yk - 1 if attribute Ak is correctly performed and Yk - 0,

otherwise (if Ak is not a task, and the word "score" is not

suitable, then Yk - 1 could signify "applicable", "belonging to"

or any "affirmative adjective"). Let Xj be a score variable of

item j and assume that Xj takes the value 1 for the correct answer
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and 0 for wrong answers. The relationship between latent-score

pattern y - (Y1 ,...Yy) and the observable item score Xj is given

by Equation (1):

K
= I yf j=l,..., n (1)

k-1

This equation implies that a response to item j will be correct if

and only if latent scores Y, of attribute Ak for Ojj - I are all

equal to 1. If any one of such latent scores is zero, then the

item score Xi becomes zero. Needless to say, the meaning of

%j - 0 and Yk - 0 should not be confused because 0 is an

involvement index of attribute Ak to item j while Yk is the score

of attribute task Ak. The latent score pattern for item j shall

be expressed by

z - (YlQlj, Y2Q2a ., YkQj) (2)

where Zkj - YkQkj does not exist when Qk j - 0.

Further let us assume the conditional independence of latent

variables Yk (k - 1,. .. ,K) and manifest variables X, (j - 1 ... ,n)

for each performance level 8. Let t be the total score of a

latent score pattern y where we assume a special case, 04j - I for
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k - 1,..., K, and Pk be the probability of attribute Ak to be

performed correctly,

K (3)t = Yk(3

Then the random variable t follows a binomial distribution if the

attribute probabilities Pk are the same for all k, and a compound

binomial distribution if the probabilities are different.

Prob(tIO) {j WY (lPk)Yk (4)M-0 - r k-1

The Drobability of getting the total score of K, or equivalently

the pactern of all ones (1, 1..., 1) is given by the last term of

equation (4).

Prob(t = KID) = flPk (5)

Let si be the total score of a latent pattern Zj for item j,

then the relationships parallel to equations (4) and (5) for the

variables sj, z3 and the probabilities pk are given by equations

(6) and (7), respectively.
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Prob(sj3 0) l= F, Z = s- II PkZk(1-Pk)Zk

The probability of getting a particular pattern z3 - 1 is given by

equation (7),

Prob sj = & ej = Pk (7)
k-l k-I

When item score X3 is not binary and the response to item j

is scored by taking some partial knowledge into account, then the

above disrcssion needs to be modified.

An Ii :, -en-. Matrix And Partial Credit Scoring

The elements of a latent pattern zj - (Zlj, Zzj ZKj) of

item j can be replaced by integers or real numbers. Each element

Zkj can be the number of attributes which an examinee answered

correctly or the weighted sum of the number of attributes answered

correctly. That is:

XWkjZkj (8)
ke 1 m
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where Zkj - 1 if and only if attribute Ak is involved in item j

and an examinee performed Ak correctly.

When Wki is equal to 1 for k - 1,...., K, then X, becomes

simply the number of correct attributes. The larger the Xj value

is, the higher the level of performance is. Thus, graded response

or parLial credit models (Samejima,F., 1969; Masters,G.N. ,1982)

can be applied. However, Zkj, kE(Qkj - 1) are usually not

observable. If a multiple-choice item is constructed so as to

have various subsets of scores of Zkj for the alternatives, then

it is possible to apply graded, partial credit or Polychotomous

models. The partial credit model is formulated for situations in

which ordered response choices are free to vary in number and

difficulty from item to item. The restriction of the model is

that tests are constructed with an ordered response format.

Polychotomous models (Bock,R.D.,1972) do not require the ordered

response format and are applicable to multinomial response

categories.

When the weights are not 1, then the Wkj's indicate that the

quality of Ak varies over the attributes. Some attributes are

more difficult while others are less so. It is well known that

there are S. ways to get the total score of sj from s different
ateribute sj Some cb ti a
attributes. Some combinations are cognitively more important than
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others. It will provide us with useful information for

constructing a good item pool for constructed response items or

selection of distractors in multiple choice items.

Lattice and Boolean Algebra

In the previous section, the attributes were introduced as

the row vectors of the incidence matrix Q and denoted by vectors

Ak, k-l...... K. For example, let us consider the 3 x 5 incidence

matrix shown below, where il,..., i5 are items and A,, A2 , and A3

are attributes:

i1 i2 i3 i4 i5

A, -1 0 1 0 11 (9)

Q = A2  1 0 0 1

A3 [ 1 1 1 1

There are three row vectors, A, - (1 0 1 0 1), A2 - (0 1 0 0 1)

and A3 = (0 1 1 1 1). In other words, attribute A, is involved in

items 1, 3 and 5, attribute A2 is in items 2 and 5 and attribute

A3 is in 2, 3, 4 and 5. Therefore, the attributes can also be

expressed by a set theuretical notation like A, - {1, 3, 5),

A2 - {2, 5) and A3 - (2, 3, 4, 5). When we discuss the attributes

in the context of set theory, the attributes are written in non-

boldface capital letters as A, .., AK. If an incidence matrix Q

happens to be thp identity Tuatrix of order K - n, then Ak contains
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a single item, and Ak - (k).

Let L be a set of subsets obtained from the set of K

numbers, J - (1, 2,..., K). L will be a lattice and Boolean

algebra. Lattice and Boolean algebra have been discussed in the

field of abstract algebra and they have many interesting

properties. They have been applied to digital computer systems

and proved to be very useful in providing a simple and precise

foundation for the analysis of combinatorial switching circuits.

These properties will play a crucial role in achieving our goal

which is to obtain the universal set of ideal response patterns

(or all the possible states of knowledge and capabilities)

obtainable from a given incidence matrix. Let us start from the

definition of a lattice.

Definition 1 A set of sets L is said to be a lattice if two

binary compositions U and n are defined on its subsets (called

elements hereafter) and they satisfy the following relations:

11 A U B - B u A, A n B - B n A

12 (A u B) u C - A u (B u C), (A n B) n C - A n (B n )

13 A U A - A, A n A - A

14 (A u B) n A - A, (A n B) u A - A

The above conditions are equivalent to saying that a lattice is a

partially ordered set in which any two elements have a least upper

bound and a greatest lower bound. The l.u.b. and g.l.b. of any



Boolean Algebra
12

elements A and B in L are given by the union and intersection,

A U B, and A n B, respectively. Similarly, (A U B) U C is the

l.u.b. of A, B, C and (A n B) n C is the g.l.b. The order in L

is defined by Definition 2:

Definition 2 For any pair of elements A and B in L, A B if and

only if A U B - A or A n B - B.

Definition 2 provides us with an equivalent condition for L

to be a lattice. This order satisfies the asymmetric (if A a B

and B Z A then A - B) and transitivity laws (if A Z B and B a C

then A ! C), thus L becomes a partially ordered set. Let us

further define I and 0 as follows:

K K

I = U Ak and 0 = AlA (10)
k-1 k-1

then I and 0 belong to L. If the distributive law,

A n (B u C) = (A n B) u (A n C) (11)

is satisfied, then L is called a modular lattice. The modular

condition has an alternative definition: if A a B and

A U C - B U C and A n C - B f C for any C in L, then A - B.

The third important operation is complementation.

Definition 3 The complement A' of A is defined by A'u A - i and
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A'rl A - 0.

For example, the lattice of a set of subsets is complemented

if the complement of a subset A is the usual set-theoretic

complement--that is, the elements of J that do not belong to A.

Definition 4 A Boolean algebra is a lattice with I and 0, the

distributive law and complementation.

Definition 4 implies that our lattice L is also a Boolean

algebra. The most important elementary properties of complements

in a Boolean algebra may be stated as follows:

Theorem 1 The complement A' of any element A of a Boolean Algebra

L is uniquely determined. The mapping A - A' is one to one, onto

itself. Then the mapping satisfies conditions 1 and 2:

1. (A')' - A

2. (A U B)' - A' n B' and (A n B)' - A' U B'

The proof may be found in Birkoff (1970).

A Boolean algebra becomes a Ring with the two operations + and x

where + is the union set of A and B and x is the intersection of A

and B.

Definition 5 For A and B in L, the addition + of A and B is

defined by A + B - A U B and the product x is defined by A x B - A

n B. Thus L becomes a Ring.

It is obvious that L satisfies commutative laws, associative

laws, the identity laws A + 0 - A, A x I - A, and Idempotent law
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A + A - A with respect to the new operations + and x.

Distributive law is also satisfied. In summary,

1. A + B - B + A, A x B - B x A

Commutative Laws

2. (A + B)' - A' x B', (A x B)' - A' + B'

Complementation

3. (A + B) + C - A + (B + C), (A x B) x C - A x (B x C)

Associative Laws

4. A + 0- 0 + A - A, A x I - I x A - A

Identity

5. A + A - A, A x A - A

Idempotence

6. (A + B) x C - A x C + B x C

Distributive Law

The relationship between the attribute vectors

Ak (k - 1,..., K) and the Ring L just introduced will be

clarified.

Attribute Response Space and Item Response Space

When an incidence matrix is the identity matrix of order

K, then Ak will be the unit vector ek - (0 ..., 1, 0 .... 0), whose

k-th element is I and the other elements are zero. A Boolean
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lattice L will hen consist of a set of attributes where attribute

Ak corresponds one-to-one to item k or equivalently to ek ,

Therefore, L can be considered as a set of sets of items, or

equivalently as a set of sets of eks. In order to distinguish

between these two sets, the set of sets of attributes is denoted

by the same notation, L and the set of sets of items (or sets of

ek) is denoted by RL, in other words Boolean Algebra of Item

Response Patterns. Both L and RL are K-dimensional spaces since

the incidence matrix is the identity of order K. If an incidence

matrix is not the identity then RL, which associates with a non-

identity incidence matrix becomes a subspace of RL. It is very

difficult, in practice, to construct an item-pool whose incidence

matrix is the identity. Each item in the identity-incidence

matrix must contain one and only one attribute. It is very common

that an item involves several attributes and two different items

usually involve two different sets of attributes. In practice

most incidence matrices are usually more complicated than the

identity matrix and their columns and rows contain several ones in

a variety of cells.

In the earlier example of 3 x 5 matrix, A, - (1 0 1 0 1)

corresponds to set A, - (1, 3, 5); A 2 - (0 1 0 0 1) to

A 2 - (2, 5); and A3 - (0 1 1 1 1) to A 3 - (2, 3, 4, 5). The union

set of A1 and A2, (1, 2, 3, 5) corresponds to the addition of
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A, + A2 - (1 1 1 0 1) in terms of elementwise Boolean addition.

Boolean addition is defined by 1 + I - 1, 1 + 0 - 1, 0 + 1 - 1 and

0 + 0 - 0. The intersection of A, and A2 , (5) corresponds to the

product of A, x A2 - (0 0 0 0 1) in terms of elementwise Boolean

multiplication of 0 and 1. Boolean multiplication follows the

rules, 0 x 0 - 0, 1 x 0 - 0 x 1 - 0 and 1 x I - 1. It is clear

that these operations satisfy the above relations I through 6.

The complement of Ak is A'k whose elements are obtained by

switching each element of Ak to the opposite; thus complement of

A, is (0 1 0 1 0), A'2 is (1 0 1 1 0) and A'3 is (1 0 0 0 0). It

is also clear that Ak + A'k is equal to 1.

Suppose Ak, k - 1 .., K are the row vectors of such a

general incidence matrix, and let RLI be a set of sets of the

attribute vectors. Then RL becomes a sublattice of RL which is

derived from the set of all the response patterns. A subset RL1

of RL is called a sublattice if it is closed with respect to the

binary compositions n and U. Further Theorem 2 shows that RL

becomes a subring of RL also.

Theorem 2 A set RLI of sets of row vectors of an incidence matrix

Q is a Boolean algebra with respect to elementwise Boolean

addition and multiplication of 0 and 1.
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Boolean addition and multiplication satisfy the following:

1 0+0-0

2 1+1-1

3 0+1-1+0-1

4 Ox 0-0

5 0x 1-I x0-0

6 ixl-I

7 (0 + 1) x 0 - x 0 -0 & (0 x ) + 0 -0 + 0 -

8 (0 + 1) x 1- x - 1 & (0 x ) + - 0 + I -1

9 (0 + ) + 0 -0 + ( + 0) & (0 x i) x l - 0 x (i x i).

Further RL, satisfies 0' - 1 and hence 1' - 0. So RL1 is a

Boolean algebra. For any elements of RL1 , Ak + A1 is defined by

elementwise Boolean operations of + and x. Then, any elements Ak

and A, of RL, satisfy the lattice conditions given below:

11 Ak + AL - A, + Ak & Ak x A, - A, x Ak

12 (Ak + A,) + A - Ak + (A, + A.) &

Ak x A,) x A. - Ak x (A1 x A.)

13 Ak + Ak - Ak Ak x Ak- Ak

14 (Ak + A,) x Ak- Ak & (A, x A) + A1 - A1

K K
Let us define 0 - 1 Ak and 1 - E Ak; then the complement Ak'

k-1 - k-1
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is defined by Ak + Ak' - I and Ak x Ak' - 0 wi:h elementwise

BoolcatL operations of + and x. The distributive laws are also

satisfied from properties 7 and 8, that is Ak x (A, + A) - Ak x A,

+ Ak x Am . Therefore RL1 becomes a Boolean algebra. In the

example of our 3 x 5 incidence matrix, the elements 0 and 1 are

given by 0 - (0 0 00 1) and 1- (i 1 1 1 1).

Example:

[1010 ]

0 0 1001
01111]

K K
0 - I1 Ak - (0 0 0 0 1), and 1 - E Ak - (1 1 1 1 1),
- k-1 - k-1

A,' - (0 1 0 1 1), A2 ' - (1 0 1 1 1), and A3 - (1 0 0 0 1).

Several properties of RL1 are introduced below:

Property 1 RL is a subset of all possible response patterns and

is closed with respect to the Boolean operations.

Property 2 If Q is the n x n identity matrix, then RL, - RL.

Property 3 If Ak ?_ A, then Ak + A, - Ak and Ak x A, - A,.

Example: Since A3 a: A2 , A2 + A3 - A3 and A2 x A3 - A2 .

Property 4 If Ak _> A, then Ak ' _5 A,', (Ak + A,)' - Ak' and

(Ak x A,)' - Al'.

Property 5 If Q is a Kxn lower triangle matrix (or Guttman scale

matrix) then RL, consists of K row vectors.
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If Q is a Guttman scale matrix, then the row vectors are

totally ordered, A, 5 A2 :... 5 AK . For any k and 1, with k 1,

Ak + A, - Ak and Ak x A1 - A1 from Property 3. Moreover, the

identity 1 will be Ak and the null element 0 will be A1.

Incidence matrices having this form are often seen in

attitude tests where measures are coded by ratings. Models such

as Samejima's graded response model or Masters' partial credit

rcJsl will be suitable to this form of incidence matrices. These

models were developed to measure an ordered trait. For such a

trait, linearly ordered levels or categories within an item exist.

As a hypothetical example, suppose there are three items:

1) Add 2/3 and 2/3, then reduce the answer to its simplest

form,

2) Add 1/3 and 1/3, and

3) What is the common denominator of 1/3 and 1/5?

Then the attributes are:

A1 : Simplify to the simplest form,

A2: Get the numerator, and

A3: Get the denominator.
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The incidence matrix is:

item 1 item 2 item 3

A, 1 0 0 level 1: can do

Q = A2  1 1 0 level 2: can do A3 and A2

A 3  1 1 1 level 3: can do all

Thus, scores for the levels will be 1, 2, and 3, respectively.

Property 6 The complement of the sum of Ak and A1 with respect to

Boolean addition is the product of the complements of Ak and A,

(Ak + A,)' - A'k x A'I .

Property 7 The complement of the product of Ak and A, with

respect to Boolean product is the sum of the complements of 4 and

A,, i.e., (Ak x A1 )' - Ak' + A1'.

Definition 6 A chain is a subset of RL, in which all the elements

are totally ordered with respect to ? or 5.

Since RL1 is a partially ordered set, (and so are L, L1 and

RL) there are usually more than one chain. The order relation is

not applicable to two different elements coming from two different

chains. Moreover, two chains may contain the same elements in

common. Therefore, a tree graph can be drawn by connecting the

elements in the chains (Tatsuoka & Tatsuoka, 1990).

The next section introduces a new function by which the

universal set of ideal response patterns (or all possible states
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of knowledge) is obtainable from an incidence matrix, and gives

their descriptive meanings. The description of states are given

by a list of combinatorial "can/cannot" attributes.

Boolean Description Function: Determination of Ideal Response

Patterns As Error-Free States of Knowledge and Czpabilities

There are several interesting relationships between the K-

dimensional unit vector ek and Ak.

Property 8 The unit vector ek of the latent variable space

uniquely corresponds to attribute vector Ak and the Boolean sum of

ek, E ek corresponds to the sum of Ak, E Ak. Similarly, the
k k

Boolean product of the elements of ek, H ek uniquely corresponds
k

to that of Ak, 1 Ak.
k

Since our goal is to draw some inferences about latent score

patterns Y from observable information of item response patterns,

it is necessary to introduce a series of hypotheses which convert

the latent-but-interpretable information into observable-and-

interpretable information. The observable information in our

context is obtainable only from item responses and we do not

assume observable information from the latent scores.

Definition 7 A hypothesis Hk is the statement that "one cannot do

attribute Ak correctly but can do the remaining of the

attributes." Hk will produce the item pattern which is the

complement of Ak and represent an interpretable state of
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knowledge.

It is clear that if a student cannot perform Ak correctly

but can do the remaining of the attributes right, then the items

involving attribute Ak will have the score of zero but the items

not involving Ak will get the score of is. The mapping function,

Ak - Ak' that takes the complement is equivalent to applying the

hypothesis Hk.

Property 9 Taking Hypothesis Hk is equivalent to taking the

complement of Ak and is denoted by A'k.

Property 10 The hypothesis Hkl+...+kl is "one cannot do any of the

attributes Akj, Ak2 ... , Aki correctly but can do the rest of the

attributes".

Taking the hypothesis Hkl+...+k is equivalent to taking the

complement of the addition of Akj ..... Ak, i.e.,

(Akl +- - . .+ Al) '- Ak'1 x...x Ak'. (12)

The item patterni will be

Xj - 0 if Qkj - 1 if there is at least one k in the set

{kj, k2,..., kj}

Xj- 1 if Qj - 0 for all k in the set (kj, k2,..., k).

As an example, we use the incidence matrix of order 3 x 5 given on

p. 11. Table 1 shows various hypotheses and their descriptive
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outcomes and resulting ideal item patterns.

Table 1 to be inserted about here

The description of "cannot/can" in the second column of

Table 1 corresponds to the latent-score patterns of y's given in

Table 2. The hypothesis defined in Proerties 9 and 10 and

Equation (13) provide us with a mapping between attribute patterns

and ideal item patterns.

Table 2 to be inserted about here

This mapping is a Boolean function which plays the role of

uncovering the contents of a black box. In our situation, latent

scores on the attributes become observable via this Boolean

function.

Definition 8 The mapping f from the attribute response space to

the item response space is called a Boolean Description Function.

The Boolean descriptive function f satisfies the following

property:

Property 11 For Boolean Description Function f and ek,

1 f(ek') - A k '

2 f((el + ek)') - f(el' x ek') - A,' + Ak'
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K
3 f(0) E '

- k-1

4 f(I) - I

K K K K

Note that f1 Ak-O, but ( f Ak)' Ak' Pd I because Ak-I

K k-i k-i k-i k-i

but E Ak',, I in RL I .
k-i

Since RL, is a Ring, it is natural to consider the

hypotheses that involve interactions of two or more attributes.

Property 12 The hypothesis Hklx .. x kl is that "one cannot do

attributes Ak, .... Akl when all of them are involved in a single

item but can do each separately and can do the remaining

attributes". This hypothesis corresponds to

(Akl x.. .x Akj)' - AkI +. .+ Ak. (14)

The item pattern will be

Xi - 0 if QkIj - Qk2j Qk i

Xj - 1 if there is at least one k t such that Qtj - 0 for

kt, t - 1, 2 -...i

The hypotheses of interactions, (14) also produce the ideal item

patterns that can be charactzrized by "can/carrt attributes".

Insert Table 3 about here

In our situation, the latent score patterns of the
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attributes become observable via the Boolean description function.

If the attribute response space is considered as a linear vector

space of Y, then the ideal item response patterns generated by the

hypothesis introduced in Property 10 will be sufficient to

describe students' states of knowledge and capabilities. But as

can be seen in Table 3, RL, contains other ideal item patterns

generated by the hypotheses Hk12x ... l which involve the

interaction of latent score Ys. These patterns do not correspond

to the latent attribute score patterns Y in the linear vector

space spanned by the ekS. For example, the ideal item response

pattern corresponding to the interaction of attribute scores

Y1 x Y2 is produced by Hyl x y2. In other words, the ideal pattern

corresponding to the interaction y1 x Y2 contains Os only for the

items that involve both the attributes A, and A2. Since the

current test theories such as Item Response Theory models require

the assumption of conditional independence of item responses, they

may not be applicable to the dataset obtained through the

hypothesis of the interaction of scores (YlY2 , or X1X2). We will

restrict the scope of this study to the linear hypothesis of

Hkl +...+ U., which requires only linearity of y.

The Boolean description function f is not a one-to-one

function. As can be seen in Table 1, hypotheses H3 and H2+3 yield

the identical item pattern (1 0 0 0 0), and so do H0 and H1+3. The
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ideal item patterns resulting from application of two different

hypotheses may not be always different, and indeed there is a

systematic relation when two hypotheses produce the same ideal

item pattern. Property 3, needless to say, implies that any

element A, smaller than Ak with respect to the order 2 in L,

"degenerates" so that addition of Ak and A, becomes Ak. That is,

A, + Ak - Ak if Ak ! A1 . Similarly, Ak x A, - Al if Ak t A,.

A special example that is affected by this degenerative

property is the incidence matrix of Guttman type. This type of

incidence matrix produces K elements consisting of the original

row vectors because the row vectors become a single chain of

length K. The 3 x 5 incidence matrix used as example above often

has two chains, A3 , and A, 2 A2. The distinct elements will be A3

and A,, A2 ,

A3 +Aj- (I 1 111), A2 +Aj- ( I10 1),

A3 x A1 - (0 0 1 0 1), A2 x A1 - (0 0 0 0 1).

Let us introduce an important definition that will be useful

for determining the number of elements in RLj.

Definition 9 An element A of L, is an atom if there are no

elements between A and 0, or equivalently if A s B and A - B,

imply B - 0.

Property 13 Atoms in L, can be generated by

A, - kl Ak) n (lAk)' for all possible subsets s of
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J 2,..., K). Or, equivalently A, - nA,, n ( Ak)
kes es

As are prospective atoms and some of them may be equal to 0. The

intersection of two different atoms is 0: Ak n A, - 0.

Property 14 Any element B of L, can be written as B - U Ak
keM

where Ak are atoms and H is an index set.

Examples of Properties 5 and 6 are illustrated with our

familiar 3 x 5 Q matrix. Let us consider the index set (1, 2, 3).

Its non-empty subsets are (1), {2), (3), (1, 2), (1, 3), (2, 3)

and (1, 2, 3). Then

a, - A1 n (A2 n A3)'- (1 0 0 0 1)

a2 - A2 r) (A, n A3)'- (0 0 0 0 1)

a 3 - A3 r) (A, n A2 )'- (0 0 0 1 1)

a 12 - A1 Cn A2 0 A3'- (0 0 0 0 1)

a 13 - A, n A3 n A2 '- (0 0 1 0 1)

a23 - A2 n A3 n A,'- (0 1 0 0 1)

a 12 3 - A1 n A2 n A3 = (0 0 0 0 1)

As can be seen in the above examples, there are four atoms a1 , a3,

a13 , and a23 while a2 , a12 and a123 are degenerated to the 0

element of Ll. The original row vectors are written as follows:

A1 - a, + a 13

A2 - a 2 3

A3 - a23 + a13 + a 3 .

Since every element in RL, is expressed by a combination of atoms,
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there are 2' - 16 elements in RL1 . In general, any element in RL,

is written by a linear combination of the atoms that are linearly

independent. The number of the atoms will determine the number of

elements in RL. The atoms are usually not interpretable unless a

test has the identity incidence matrix. The attributes in an

identity incidence matrix are atoms.

Summary and Discussion

Tatsuoka (1990) discussed an incidence matrix Q that is an

indication matrix of item characteristics with respect to the

underlying cognitive processes which are involved in each item.

These cognitive tasks are called cognitively relevant attributes

in this study. An advantage of expressing the underlying item

characteristics explicitly in matrix form is a tremendous benefit:

First, it enables us to use a variety of scoring methods such as

right or wrong, graded scores, or partial credit scores. Second,

it enables us to apply powerful mathematics to investigate

systematically a variety of relationships among the unobservable

attributes, between the attributes and the items. Third, it

enables us to help examine the structure of a test with respect to

the underlying cognitive tasks.

Since a set of sets of attributes is a Boolean algebra

(Boolean Algebra has been used widely in the theory of

combinatorial circuits of electricity and electronics),
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unobservable performances on the attributes are viewed as

unobservable electric current running through various gates if

they are open. An open gate corresponds to an attribute that is

answered correctly, and a closed gate to wrong answers. All the

gates in a circuit must be open so that the current goes through

it. An item can be answered correctly if and only if all the

attributes involved in the item can be answered correctly. This

is an intuitive analogy between the electricity and electronics

and cognitive processes of answering the items, but Boolean

Algebra used for explaining various properties of electricity and

combinatorial circuits can be applied to explain the underlying

cognitive processes of answering the items.

The theoretical foundation of relationships between

observable item response patterns and unobservable responses on

the attributes which are cognitively relevant to the items is

given in this study also. A newly defined Boolean descriptive

function f plays the role of a link between underlying cognitive

processes of test items and all the response patterns of these

items. Since the model does not expect that responses on the

attributes are observable, measures of performances on the

attributes can not be obtained directly. However, the Boolean

descriptive function converts unobservable states of knowledge and

capabilities into a set of observable item patterns which are
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called ideal item patterns that are free from measurement errors.

The states of knowledge and capabilities are represented by a list

of "can/cannot" attributes. The increase of the numbers of states

is combinatorial, but Boolean algebra provides us with

mathematical tools to overcome the problem of a combinatorial

explosion.

Once a list of predetermined groups or states of knowledge

and capabilities is determined by a software called "BUGLIB" based

on this study, then the notion of "bug distribution" (Tatsuoka and

Tatsuoka, 1987; Tatsuoka, 1990) and statistical pattern

classification techniques (Tatsuoka, 1985; Lachenbruch, 1975) will

enable us to diagnose students' states of knowledge accurately.

Finally, we conclude the study with an important implication

for modern test theory. An incidence matrix implicitly indicates

that the attribute scores y-(Y1 ,Y2, ... YK) satisfy local

independence by a given performance level if we assume local

independence at the item level. The Item Response Theory models

are built upon this conditional independence of performance level

theta. However, the Boolean algebra of a set of sets of response

patterns is also a Ring, so it permits us to consider the states

of knowledge and capabilities derived from the interaction of

attribute scores. The Boolean descriptive function generates the

ideal item patterns corresponding to the states determined by
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using interaction of attributes. Such errors states have been

observed in many studies of "bug analysis" (Brown and Burton,

1978; Tatsuoka, 1984). A new model that does not assume local

independence will be needed in the future.



Boolean Algebra
32

References

Birkoff, B., (1970). Lattice Theory. MacMillan, New York.

References

Bock, R. D. (1972). Estimating item parameters and latent ability

when the responses are scored in two or more nominal

categories. Psychometrika, 46, 439-459.

Masters, G. N. (1982). A Rasch Model for partial credit scoring.

Psychometrika, 47, 149-174.

Samejima, F. (1969). Estimation of latent ability using a response

pattern of graded scores. Psychometrika, Monograph

supplement. 34(4), Part 2.

Tatsuoka, K. K. (1990). Toward an Integration of Item-Response

Theory and Cognitive Error Diagnosis. In N. Fredericksens,

Glaser, Lesgold and Shafto (Eds.) Diagnostic monitoring of

skill and knowledge acquisition. Lawrence Erlbaum,

Hillsdale, New Jersey.

Tatsuoka M. M., & Tatsuoka K.K. (1988). Rule Space. In Kotz-

Johnson (Eds.) Encyclodia of Statistical Sciences, 8. John

Wiley & Sons.

Tatsuoka, K. K., & Tasuoka, M. M. (1987). Bug distribution and

pattern classification. Psychometrika, 52(2), 193-206.



Boolean Algebra

33

T tsuoka, K. K., & Tatsuoka, M. M. (1987). Item response thegry.,

Latent Classes and Rule space. (Research Report 87-2-ONR,

Final Report). Urbana, IL: University of Illinois, CERL.

Tatsuoka, K. K. (1985). A probabilistic model for diagnosing

mosconceptions in the pattern classification approach.

Journal of Educational Statistics. 12(1). 55-73.

Tatsuoka, K. K. (1984). Analysis of errors in fraction addition

and subtraction problems. (Final Report for Grant NIE-G-

0002). Urbana, IL: University of Illinois, CERL.

Tatsuoka, K. K. (1983). Rule space: An approach for dealing with

misconceptions based on item response theory. Journal of

Educational Measurement. 20(4), 345-354.



Acknowledgement

This research was sponsored by the Cognitive Science

Program, Cognitive and Neural Science Division, Office of Naval

Research, under Grant No. N00014-90-J-1307, R&T 4421559. The

author is grateful to Sung-Ho Kim, Peter Pashley, Charles Lewis

and Maurice Tatsuoka for valuable discussions, comments and

suggestions, June Quattromani for typing the manuscript.



Boolean Algebra

34

Table 1

Boolean Descriptive Function: Case of Linear Hypothesis

Hypothesis Interpretation Ideal Response Pattern

H0  can do everything (1 1 1 1 1)

H, cannot A,, can A2 , A3  (0 1 0 1 0)

H2  cannot A 2 , can A,, A3  (1 0 1 1 0)

H3  cannot A3 , can A,, A2  (1 0 0 0 0)

H1+2  cannot A,, A 2 , can A3  (0 0 0 1 0)

H1+3  cannot A,, A 3 , can A2  (0 0 0 0 0)

H2+ 3  cannot A 2 , A3 , can A, (1 0 0 0 0)

H1+2+ 3 cannot A,, A2 , and A3 (0 0 0 0 0)
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Table 2

Correspondence Between Latent Attribute Space and Item Space

Hypothesis Attribute Score Item Score

HO (l11) (l11 11)

H, (0 11) (01 0 10)

H2  (1 01) (10 1 10)

H3  (l10) (1 00 00)

H1+2 (0 01) (0 00 10)

H1+3  (0 10) (00 0 00)

H12+3 (1 00) (10 0 00)

H11+2+3 (0 00) (0 0 000)
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Table 3

Boolean Descriptive Function: Case of Interaction

Hypothesis Interpretation Ideal Response Pattern

Hzx3  Cannot A2 and A3  (1 0 1 1 0)

together, can A,

H1x3  Cannot A, and A3  (1 1 0 1 0)

together, can A2


